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1. Are some vacua more equal than others?

A feature of M/string theory that is receiving increasing attention is the vast number of

vacua, even if we decide to restrict ourselves to static solutions with 3+1 macroscopic

dimensions and N = 0, 1 (the papers devoted to the subject constitute a landscape on

their own; see e.g. [2] for reviews). Faced with this plethora of solutions, some natural

questions are whether there is a natural measure on the space of solutions, and whether

there is any built-in mechanism in M/string theory that favors some vacua over others.

A possible way of assigning weights to vacua is to consider a Wheeler-deWitt equa-

tion [3] for families of vacua of string theory. This defines a quantum mechanical problem

over some space of solutions, and the modulus square of the wavefunction is interpreted as

a probability distribution for the different solutions.

For 4d flux vacua with N = 0, 1, the Wheeler-deWitt equation has been discussed

in [4].1 A slightly different scenario for flux vacua was considered in [6], where compact-

ifications of type IIB string theory on S1 × S2 × CY were studied. For each choice of

flux, a wavefunction Ψ(p,q) was introduced, and using the intimate connection between flux

vacua and the attractor mechanism, it was then argued that the peaks of the different

wavefunctions are given by the exponentials of the entropies of related black holes with

charges (p, q).

In this scenario, it is natural to ask which flux vacuum has a wavefunction with the

largest peak, which semiclassically is equivalent to maximizing the exponentiated Kähler

potential

S = −
iπ

4

∫

M

Ω ∧ Ω̄ (1.1)

over the complex structure moduli space of the Calabi-Yau. However, this question is not

well posed as stated, since this functional is not invariant under Kähler gauge transfor-

mations. Physically, this is related to the fact that a rescaling of the charges of the black

1see [5] for a discussion of the Wheeler-deWitt equation for M-theory compactifications preserving 32

and 16 supersymmetries.
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hole leaves invariant the attractor point, but rescales the entropy. To fix this rescaling

ambiguity, the authors of [1] propose to extremize this functional subject to the condition

that we hold fixed one of the periods,

∫

C

Ω = 1 (1.2)

for some 3-cycle C. In terms of black holes, this amounts, via the attractor equations,

to scan only over black holes with one of their charges fixed at a particular value. The

entropic principle claims that the maximum of this action, subjected to the constraint of

fixing one period, constitute the preferred Calabi-Yau.

In this way of presenting the principle, the choice of period to be fixed seems quite

arbitrary. The authors of [1] argue that an equivalent formulation of their principle consists

in finding the points in Calabi-Yau moduli space where all the periods but one are aligned.

To decide if a critical point is a maximum, saddle point or minimum, we need to compute

the second variation of the functional. The character of the critical point is then determined

by the signature of a reduced period matrix, Im τij. One might have hoped that in the

best possible scenario, for a given Calabi-Yau moduli space, of all such critical points, only

one or very few are actually maxima.

In this note we argue that at the critical points of compact Calabi-Yaus, the reduced

period matrix always satisfies Im τij > 0.2 This implies that all critical points are maxima.

Since for a given Calabi-Yau moduli space one expects an infinite number of critical points

(due to the possibility of fixing infinitely many different periods), our result shows that the

entropic principle will need extra input as to why any particular period should be fixed, in

order to be useful in selecting a single point in Calabi-Yau moduli space.

In the next section we give a brief review of the construction of wavefunctions for string

vacua, and the entropic principle of [1]. We then proceed to show our main result, namely

that all critical points satisfy Im τij > 0. A simple family of examples is considered in the

last section.

2. Wavefunctions for flux vacua and the entropic principle

In this section we start by recalling the basics of the special geometry of the complex struc-

ture moduli space of a Calabi-Yau [7, 8]. After reviewing the construction of wavefunctions

of [6] and the proposal of an entropic principle of [1], we show that all critical points of

this extremization problem are actually maxima.

2.1 Special geometry

Given a compact Calabi-Yau M , we define the Hodge-Riemann bilinear form [9] on its

cohomology groups, Q : H3−k ⊗ H3−k → C by

Q(α, β) =

∫

M

α ∧ β ∧ Jk . (2.1)

2The only possible exception being if Im τij has one or more zero eigenvalues.
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The Hodge-Riemann relations assert that if α is a primitive (p, q) form, then3

ip−q(−1)
(3−p−q)(2−p−q)

2 Q(α, ᾱ) > 0 . (2.2)

With these conventions, the exponentiated Kähler potential (multiplied here by a conve-

nient constant) is semipositive

S =
π

4
e−Kcs = i3

π

4

∫

M

Ω ∧ Ω̄ . (2.3)

Let {AI , BI}, I = 0, . . . , h2,1(M) be a symplectic basis for H3(M, Z), and (αI , β
I) their

Poincaré dual forms (αI , β
I). In this basis, the periods are

XI =

∫

AI

Ω FI =

∫

BI

Ω . (2.4)

One can argue that the periods FI derive from a prepotential FI = ∂IF , with F(X) a

homogeneous function of degree two. In terms of the periods,

S =
π

4
e−Kcs =

iπ

4

{

X̄IFI − XI F̄I

}

. (2.5)

Finally, define the period matrix as τIJ = ∂FJ

∂XI . Since ∂IΩ = αI − τIJβJ , it follows that

Im τIJ =
i

2

∫

M

∂Ω

∂XI
∧

∂Ω

∂XJ
. (2.6)

Now, using that ∂IΩ ∈ H3,0 ⊕ H2,1, and applying the Hodge-Riemann relations we learn

that Im τIJ has signature (1, h21).4

The periods provide projective coordinates for the moduli space, but it will be conve-

nient to introduce affine coordinates ai = Xi/X0, i = 1, . . . , h2,1(M) and define F (a) =

(X0)−2F(X), aD
i = ∂F (a)

∂ai . The action can be rewritten in terms of these coordinates as

S =
iπ

4
|X0|2

{

2(F − F̄ ) − (ai − āi)(aD
i + āD

i )
}

. (2.7)

2.2 Wavefunctions for compactifications without fluxes

There are some obvious similarities between the period matrix Im τIJ and the deWitt

metric: both are defined over a space of space-like metrics, and both have hyperbolic

signature, with the ’timelike’ direction reflecting the possibility of rescaling the spacelike

metrics. It is then natural to consider whether there is a minisuperspace approach to

Calabi-Yau compactifications, where Im τIJ plays the role of metric in superspace. String

3The overall sign of the Hodge-Riemann bilinear form fluctuates in the literature, due to different choices

of orientation. We follow the conventions of [9].
4The overall sign convention mentioned in the previous footnote would show up also here. The result

that is independent of conventions is that for an exponentiated Kähler potential that is real and semipositive

definite, its matrix of second derivatives (−Im τIJ in our conventions) has signature (1, h21), where the first

entry denotes the number of negative eigenvalues.
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theory provides a very natural candidate for a quantum mechanical system defined over

H3(M): the B-model topological string. The first hint is that the operators of the B-model

topological string are in one to one correspondence with the (2, 1) cohomology of the Calabi-

Yau. More importantly, it was argued in [10] that the B-model topological string partition

function is a wavefunction on H3(M). This partition function satisfies the holomorphic

anomaly equations [11]. These holomorphic anomaly equations can be written in terms

of large phase space variables [12, 13], with Im τIJ playing the role of metric in this large

phase space. The holomorphic anomaly equations, however, should not be thought of as

the Wheeler-deWitt equation for the topological string: they only reflect the background

dependence on the choice of polarization.5 It would be interesting to understand what

wave equation plays the role of Schrödinger equation for the topological string partition

function.

2.3 Wavefunctions for flux vacua

Another family of string compactifications where wavefunctions can be computed was

discussed in [6]. They consider type IIB with all spatial dimensions compactified, on

S1 × S2 × M , with M a Calabi-Yau, and fluxes turned on. More specifically, a F5 flux of

the form w∧F3 is turned on, where w is a unit form on S2 and F3 is a RR form determined

by the fluxes (pI , qI),

pI =

∫

AI

F3 qI =

∫

BI

F3 . (2.8)

The conditions for this flux to preserve supersymmetry are intimately related to the at-

tractor equations of a different system: that of the compactification on M with wrapped

D3-branes with charges (pI , qI). The attractor mechanism fixes a point in the complex

structure moduli of M in terms of the charges (pI , qI)

pI = Re (CXI) qI = Re (CFI) . (2.9)

For a fixed choice of (pI , qI), [6] define the entropy functional

S(p,q) = −i
π

4

(
∫

Ω ∧ Ω̄ +

∫

(Ω + Ω̄) ∧ F3

)

. (2.10)

This functional has two nice properties: first, when we extremize it with respect to XI , the

equations of motion are the attractor equations, for C = 1. Second, when this functional

is evaluated at the solution, it gives the semiclassical entropy of a black hole of charges

(pI , qI),

S(p,q)|att = SBH

(

pI , qI

)

. (2.11)

The authors of [6] promote the classical BPS equations for the attractor flows to a su-

persymmetric version of the Wheeler-deWitt equation. In this fashion, for each choice of

fluxes (p, q), one has a wavefunction Ψ(p,q). These wavefunctions are peaked at the attrac-

tor point, and furthermore it can be argued [6] that their natural normalization is such

that the value at the peak behaves like eSBH (p,q).

5I would like to thank R. Dijkgraaf and K. Skenderis for useful comments on this point.
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2.4 The entropic principle

If we repeat this process for very many different charge vectors (pI , qI), we will find many

attractor points in moduli space, and we might be tempted to assign to each of them the

weight eSBH (pI ,qI). However, this assignment is not well defined as it stands: if we consider

a set or rescaled charges (λpI , λqI), the solution to the attractor equations is still the same

point in moduli space (recall the XI are projective coordinates), but the entropy of the

corresponding black hole has changed. If we want to unambiguously assign a weight to

a given point in the Calabi-Yau moduli space, we first need to fix this ambiguity in the

rescaling of the charges. A proposal for how to do this was presented in [1] to which we

now turn.

Consider the flux independent part of the entropy functional

S = i3
π

4

∫

M

Ω ∧ Ω̄ . (2.12)

This functional evaluated at an attractor point still gives the semiclassical entropy of the

corresponding black hole, so the first thought might be trying to maximize it. However, as

we have just seen, as far as determining attractor points in moduli space, the charge lattice

behaves like a projective variety: (λpI , λqI) yield the same attractor point that (pI , qI).

A possibility is then to fix a hypersurface in this charge space, e.g. fix one of the charges.

In particular, in [1] they propose to extremize the functional S, keeping fixed one period

Xc. Since we are fixing the period of a 3-cycle, without loss of generality we take that

cycle to be primitive. Now, since the action of the symplectic group is transitive, we can

always take that primitive cycle to be an A-cycle in a symplectic basis. So without loss

of generality, we can fix the period X0. For this purpose, one first rewrites this entropy

functional in terms of the “reduced” periods ai = Xi/X0, aD
i .

S =
iπ

4
|X0|2

{

2(F − F̄ ) − (ai − āi)(aD
i + āD

i )
}

. (2.13)

At the attractor point, this is equivalent to fixing a magnetic charge p0 and φ0, the chemical

potential of its dual electric charge[14]. In this way we get rid of the ambiguity in assigning

an entropy to points in moduli space, and comparing the different entropies becomes well-

defined.

This entropy functional has critical points with respect to the variation of ai, āi, given

by the equation

Im aD
i − τij Im aj = 0 . (2.14)

Since the signature of Im τIJ is (1, h2,1), the signature of Im τij is either (0, h2,1) or (1, h2,1−

1). Furthermore, taking the imaginary part of this equation, we see that if |Im τij| 6= 0, all

critical points have Im ai = 0. To determine if these critical points are maxima, minima

or saddle points, we need to consider the matrix of second derivatives

δ2S = −π|X0|2 (Im τij) δaiδāj +
π

2
|X0|2Im ai

(

cijkδa
jδak + c̄ijkδā

jδāk
)

(2.15)

with cijk = ∂iτjk. Since cijkIm ak does not have a definite signature, if it is different from

zero, the critical point can’t be a maximum. A sufficient condition for cijkIm ak = 0 at a

– 5 –
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critical point is that |Im τij| 6= 0, since then Im ai = 0. Therefore, if Im τij > 0 the critical

point is a maximum, and if Imτ has hyperbolic signature, the critical point is a saddle

point (or a minimum if h2,1 = 1). Maxima are then of the form

Im ai = Im aD
i = 0 Im τij > 0 . (2.16)

Such a point in moduli space solves the attractor equations for pi = qi = 0. This solution

allows for an alternative reformulation of the principle [1]: the critical points in Calabi-Yau

moduli space are such that all the periods but one are aligned. Then, the 3-cycle whose

period is fixed is the symplectic dual to the 3-cycle that has null intersection with all the

3-cycles with aligned periods.

We now will give two arguments showing that at critical points it is always the case that

Im τij ≥ 0, with the equality only possible if furthermore ∂iΩ = 0 for some i. Otherwise,

we have a maximum. The first argument is quite simple. Using that X0 is fixed, we can

write the imaginary part of the reduced period matrix as

Im τij =
i

2|X0|2

∫

M

∂Ω

∂ai
∧

∂Ω

∂aj
. (2.17)

By Griffiths transversality, we know that ∂iΩ ∈ H3,0 ⊕ H2,1. Specifically [8],

∂Ω

∂ai
= −

∂K

∂ai
Ω + DiΩ . (2.18)

But since S = π
4 e−K , the equation for critical point ∂iS = 0 is equivalent to ∂iK = 0 unless

K = ±∞. So, at critical points ∂iΩ ∈ H2,1, and it then follows from the Hodge-Riemann

relations that at a critical point Im τij > 0.

We now give a slightly different proof. Starting with the the definition F (a) =

(X0)−2F(X), we can write the second derivatives of the full prepotential in terms of re-

duced quantities

∂2F

∂XI∂XJ
=

(

2F − 2ai∂iF + aiτija
j ∂iF − ajτji

∂iF − ajτji τij

)

. (2.19)

If we now consider the imaginary part of this equation and take determinants, we arrive

at the relation

|Im τIJ | = −
2S

π|X0|2

∣

∣

∣

∣

Im τij +
2

π|X0|2
Re ∂iSRe ∂jS

S

∣

∣

∣

∣

(2.20)

At a critical point, this yields

|Im τIJ |crit = −
2S

π|X0|2
|Im τij|crit . (2.21)

We know that |Im τIJ | < 0 and S > 0, even away from critical points, so it follows that

|Im τij|crit > 0. Since the only two possibilities were that Im τij > 0 or that Im τij had

hyperbolic signature, we again conclude that all critical points have Im τij > 0.

– 6 –
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Some remarks are in order. First, we have carried out the discussion exclusively in

the complex structure moduli space. One can adapt the discussion to the complexified

Kähler moduli space, and in fact, an equation very similar to (2.21) appeared already in [8]

(see the last equation in their section 4), valid in the interior of the complexified Kähler

cone, and when one fixes the period of the 0-cycle. However, a crucial difference is that

in that particular case, the reduced period matrix has always hyperbolic signature: this is

ultimately due to the fact that the Hodge-Riemann form has definite sign on H2,1, while on

H1,1 has hyperbolic signature, since it differentiates the Kähler class from primitive forms.

This does not conflict with mirror symmetry, since mirror symmetry between Calabi-Yau

manifolds M and W does not exchange the Hodge-Riemann form on H2,1(M) with that

on H1,1(W ).

Secondly, our discussion was restricted to compact Calabi-Yaus. For non-compact

Calabi-Yaus, all the periods can actually be aligned at some locus of the moduli space: this

has been studied for orbifolds [15], ALE fibrations [16], and line bundles over del Pezzo

surfaces [17]. However, when zooming in a compact Calabi-Yau into a non-compact one,

some periods become infinite, and there is no symplectic basis in general. The results we

derived do not necessarily apply in the non-compact case, but we see this as an indication

of the limitations of studying non-compact Calabi-Yaus, which at any rate are not our

ultimate interest.

3. Some examples of critical points

As an illustration of our results, we will revisit the case of the large complex structure

limit of one-modulus models, already discussed in [1]. There, an infinite number of critical

points were identified, and it was further claimed that there were minima of the entropic

principle. We argue here that, in accordance with our general results, those critical points

are actually maxima.

The prepotential for these models in the large complex structure limit is

F = −
1

3

(X1)3

X0
. (3.1)

In [1], they focused on the subspace with Im X0 = Re X1 = 0, and noted that points

where
(

X1

X0

)2

= n (3.2)

for some negative integer n are critical points. To ease the notation, it is convenient to add

a quadratic term to the prepotential

F = −
1

3

(X1)3

X0
+ nX0X1 (3.3)

This is equivalent to the SL(4, Z) transformation performed in [1]. The periods are then








X0

X1

F1

F0









=











X0

X1

− (X1)2

X0 + nX0

1
3

(X1)3

(X0)2
+ nX1











. (3.4)

– 7 –
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Now, as pointed out in [1], whenever (X1/X0)2 = n, the F1 period vanishes, so the

periods (X1, F1, F0) align, while X0 is not aligned with them. The non-aligned period is

symplectically dual to the fixed one [1], so the fixed period is F0, which is a magnetic (B-

cycle) period with respect to the prepotential. To write down the action (which of course

is symplectically invariant) in terms of reduced variables we used that the prepotential

is homogeneous in terms of the A-periods, and all the subsequent discussion of full vs.

reduced period matrix is based on a given choice of symplectic basis. Therefore, before

we introduce reduced periods by fixing F0, we perform a symplectic transformation so F0

becomes an electric (A-cycle) period,









X̃0

X̃1

F̃1

F̃0









=









F0

F1

−X1

−X0









(3.5)

and the new prepotential is F̃ = F − (XIFI) = −F , which differs by a minus sign from

the one used in [1]. In these dual variables we can now define the usual reduced variables,

starting with F̃ = (X̃0)−2F̃ . Straightforward computation at a critical point (X1/X0)2 = n

then yields

Im τ̃ =
1

4
√

|n|
> 0 (3.6)

so these points are maxima, as they had to be according to our general arguments.
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